麻辣小说网 > 玄幻奇幻 > 数学心 > 第五百零四章 早期的报偿: 自旋

第五百零四章 早期的报偿: 自旋

    狄拉克力图调和量子力学与狭义相对论。他认为——我们现在知道这是错误的——量子理论需要一类被数学家称之为一阶方程的特别简单的方程。不必介意他为什么会这样想,或者准确地说一阶意味着什么;他想要的是在一定程度上非常精确的、有可能最简单的一类方程。这就产生了压力,因为找到一个既在这种意义下简单又与狭义相对论要求相容的方程是不容易的。为构造这样一个方程,狄拉克不得不放宽讨论的措辞。他发现采用单个的一阶方程不能达到他的目的——他需要一个复杂关联着的四个方程的系统,实际上“我们所指的”狄拉克方程正是这样的一个系统。

    两个方程是最受欢迎的。而四个方程一开始就是一个大问题。

    首先,看看好的一面。

    尽管玻尔理论对原子光谱给出了一个不错的粗糙的解释,但仍存在着很多细节上的偏离。其中一些偏离与能够占据每一条轨道的电子数目相关,另一些则涉及原子对磁场的响应,显示于原子的谱线移动。通过对实验证据的仔细分析,沃尔夫冈·泡利证明了,只有严格限制占据任意给定轨道的电子数目,玻尔模型才能描写复杂原子,尽管只是粗糙的描述。这就是著名的泡利不相容原理的起源。今天我们知道这个原理的形式是“只有一个电子可以占据一个给定状态。”但泡利的原始提议没有这么简洁;它有一些使人烦恼的难懂的文字。可以占据一个给定玻尔轨道的电子数不是一个,而是两个。泡利晦涩难懂地提到一种“经典上不可描述的两重性”,但——不用说——没有给出任何理由。

    1925年,两个荷兰大学生塞缪尔·哥德斯密特和乔治·乌仑贝克提出了一种磁响应问题的可能解释。他们展示,假如电子确实是个微小的磁体,则偏离就会消失。他们模型的成功要求所有电子必须具有他们计算出来的相同的磁性强度。他们接着建议了一个电子磁性的机制。电子当然是带电荷的粒子。做圆周运动的电荷产生了磁场。所以如果电子由于某些原因永远绕自身的轴旋转,它们的磁性就可能得到解释。这种电子内禀自旋还会有一个额外的好处。如果旋转速度是量子力学所允许的最小值,则泡利的“两重性”就可以解释了。自旋的大小不能随意变化,只有方向向上或向下方的选择。许多知名的物理学家都对哥德斯密特和乌仑贝克的观点持怀疑态度。泡利本人也试图劝阻他们不要发表他们的工作。一则,他们的模型似乎要求电子以极高的速度旋转,在电子表面,速度可能超过光速。再则,他们也没有给出是什么东西把电子维系在一起。如果它是电荷的延展分布,而且所有的电荷都同号,则它将会飞散开——而靠引入离心力,旋转只会使问题更糟。最后,在他们对电子磁性强度和自旋大小的要求之间存在着定量上的不匹配。这两个量的比率由一个称为回转磁比,记为g的因子所决定。经典力学预言g=1,然而为了拟合数据,哥德斯密特和乌仑贝克假定g=2。除去这些十分合理的异议,他们模型的结果与实验观测一致的记录继续顽强地保持着!

    进入到狄拉克的理论。在低速情况下,他的方程组有这样的一类解,在方程的四个函数中,只有其中的两个对方程的解有可观的贡献。这是一种不同的两重性。在这里,它是由于落实基